skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Creamean, Jessie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 13, 2026
  2. Samples for the analysis of dissolved nutrients were collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) from the water column, sea ice cores and from special events/locations (e.g., leads, melt ponds, brine, incubation experiments). Samples for dissolved inorganic nutrients (NO3 +NO2 , NO2 , PO4 , Si(OH)4, NH4 ) were analysed onboard during PS122 legs 1 to 3, with duplicate samples collected from CTD casts for later analysis of total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP). From leg 4, all samples collected were stored frozen at -20°C for later analysis. Analyses of stored samples were carried out at the AWI Nutrient Facility between January and March 2021. Nutrient analyses onboard and on land were carried out using a Seal Analytical AA3 continuous flow autoanalyser, controlled by the AACE software version 7.09. Best practice procedures for the measurement of nutrients were adopted following GO-SHIP recommendations (Hydes et al., 2010; Becker et al., 2019). Descriptions of sample collection and handling can be found in the various cruise reports (Haas & Rabe, 2023; Kanzow & Damm, 2023; Rex & Metfies, 2023; Rex & Nicolaus, 2023; Rex & Shupe, 2023). Here we provide data from the water column, obtained from the analysis of discrete samples collected from CTD-Rosette casts from Polarstern (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_321) and Ocean City (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_935). Data from sea ice cores and special events are presented elsewhere. Data from sea ice cores and special events are presented elsewhere. For reference, here we included data from CTD-BTL files associated with nutrient samples. These data are presented by Tippenhauer et al. (2023) Polarstern CTD and Tippenhauer et al. (2023) Ocean City CTD. 
    more » « less
  3. Samples for the analysis of dissolved nutrients were collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) from the water column, sea ice cores and from special events/locations (e.g., leads, melt ponds, brine, incubation experiments). Samples for dissolved inorganic nutrients (NO3 +NO2 , NO2 , PO4 , Si(OH)4, NH4 ) were analysed onboard during PS122 legs 1 to 3, with duplicate samples collected from CTD casts for later analysis of total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP). From leg 4, all samples collected were stored frozen at -20°C for later analysis. Analyses of stored samples were carried out at the AWI Nutrient Facility between January and March 2021. Nutrient analyses onboard and on land were carried out using a Seal Analytical AA3 continuous flow autoanalyser, controlled by the AACE software version 7.09. Best practice procedures for the measurement of nutrients were adopted following GO-SHIP recommendations (Hydes et al., 2010; Becker et al., 2019). Descriptions of sample collection and handling can be found in the various cruise reports (Haas & Rabe, 2023; Kanzow & Damm, 2023; Rex & Metfies, 2023; Rex & Nicolaus, 2023; Rex & Shupe, 2023). Here we provide data from the water column, obtained from the analysis of discrete samples collected from CTD-Rosette casts from Polarstern (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_321) and Ocean City (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_935). Data from sea ice cores and special events are presented elsewhere. Data from sea ice cores and special events are presented elsewhere. For reference, here we included data from CTD-BTL files associated with nutrient samples. These data are presented by Tippenhauer et al. (2023) Polarstern CTD and Tippenhauer et al. (2023) Ocean City CTD. 
    more » « less
  4. Abstract. Rapid Arctic climate warming, amplified relative to lower-latitude regions, has led to permafrost thaw and associated thermokarst processes. Recent work has shown permafrost is a rich source of ice-nucleating particles (INPs) that can initiate ice formation in supercooled liquid clouds. Since the phase of Arctic clouds strongly affects the surface energy budget, especially over ice-laden surfaces, characterizing INP sources in this region is critical. For the first time, we provide a large-scale survey of potential INP sources in tundra terrain where thermokarst processes are active and relate to INPs in the air. Permafrost, seasonally thawed active layer, ice wedge, vegetation, water, and aerosol samples were collected near Utqiaġvik, Alaska, in late summer and analyzed for their INP contents. Permafrost was confirmed as a rich source of INPs that was enhanced near the coast. Sensitivity to heating revealed differences in INPs from similar sources, such as the permafrost and active layer. Water, vegetation, and ice wedge INPs had the highest heat-labile percentage. The aerosol likely contained a mixture of known and unsurveyed INP types that were inferred as biological. Arctic water bodies were shown to be potential important links of sources to the atmosphere in thermokarst regions. Therefore, a positive relationship found with total organic carbon considering all water bodies gives a mechanism for future parameterization as permafrost continues to thaw and drive regional landscape shifts. 
    more » « less
  5. This dataset contains water column oxygen measurements from multi-day bottle incubations collected in the Central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition – in which the RV (Research Vessel) Polarstern was tethered to sea ice, drifting across the Central Arctic Ocean from October 2019 to September 2020. Water was collected from various depths in the water column for whole seawater respiration rates via oxygen evolution incubations during legs 1, 3, 4, and 5 of the expedition. Incubations took place in a 1 ºC (celsius) cold room onboard Polarstern. Due to temperature stability and bubble formation issues, most measurements were compromised and data has been flagged accordingly during quality checks. 
    more » « less
  6. Abstract The Arctic is warming faster than anywhere else on Earth, prompting glacial melt, permafrost thaw, and sea ice decline. These severe consequences induce feedbacks that contribute to amplified warming, affecting weather and climate globally. Aerosols and clouds play a critical role in regulating radiation reaching the Arctic surface. However, the magnitude of their effects is not adequately quantified, especially in the central Arctic where they impact the energy balance over the sea ice. Specifically, aerosols called ice nucleating particles (INPs) remain understudied yet are necessary for cloud ice production and subsequent changes in cloud lifetime, radiative effects, and precipitation. Here, we report observations of INPs in the central Arctic over a full year, spanning the entire sea ice growth and decline cycle. Further, these observations are size-resolved, affording valuable information on INP sources. Our results reveal a strong seasonality of INPs, with lower concentrations in the winter and spring controlled by transport from lower latitudes, to enhanced concentrations of INPs during the summer melt, likely from marine biological production in local open waters. This comprehensive characterization of INPs will ultimately help inform cloud parameterizations in models of all scales. 
    more » « less
  7. Abstract The Arctic warms nearly four times faster than the global average, and aerosols play an increasingly important role in Arctic climate change. In the Arctic, sea salt is a major aerosol component in terms of mass concentration during winter and spring. However, the mechanisms of sea salt aerosol production remain unclear. Sea salt aerosols are typically thought to be relatively large in size but low in number concentration, implying that their influence on cloud condensation nuclei population and cloud properties is generally minor. Here we present observational evidence of abundant sea salt aerosol production from blowing snow in the central Arctic. Blowing snow was observed more than 20% of the time from November to April. The sublimation of blowing snow generates high concentrations of fine-mode sea salt aerosol (diameter below 300 nm), enhancing cloud condensation nuclei concentrations up to tenfold above background levels. Using a global chemical transport model, we estimate that from November to April north of 70° N, sea salt aerosol produced from blowing snow accounts for about 27.6% of the total particle number, and the sea salt aerosol increases the longwave emissivity of clouds, leading to a calculated surface warming of +2.30 W m−2under cloudy sky conditions. 
    more » « less
  8. The increased fraction of first year ice (FYI) at the expense of old ice (second-year ice (SYI) and multi-year ice (MYI)) likely affects the permeability of the Arctic ice cover. This in turn influences the pathways of gases circulating therein and the exchange at interfaces with the atmosphere and ocean. We present sea ice temperature and salinity time series from different ice types relevant to temporal development of sea ice permeability and brine drainage efficiency from freeze-up in October to the onset of spring warming in May. Our study is based on a dataset collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 and 2020. These physical properties were used to derive sea ice permeability and Rayleigh numbers. The main sites included FYI and SYI. The latter was composed of an upper layer of residual ice that had desalinated but survived the previous summer melt and became SYI. Below this ice a layer of new first-year ice formed. As the layer of new first-year ice has no direct contact with the atmosphere, we call it insulated first-year ice (IFYI). The residual/SYI-layer also contained refrozen melt ponds in some areas. During the freezing season, the residual/SYI-layer was consistently impermeable, acting as barrier for gas exchange between the atmosphere and ocean. While both FYI and SYI temperatures responded similarly to atmospheric warming events, SYI was more resilient to brine volume fraction changes because of its low salinity ( < 2). Furthermore, later bottom ice growth during spring warming was observed for SYI in comparison to FYI. The projected increase in the fraction of more permeable FYI in autumn and spring in the coming decades may favor gas exchange at the atmosphere-ice interface when sea ice acts as a source relative to the atmosphere. While the areal extent of old ice is decreasing, so is its thickness at the onset of freeze-up. Our study sets the foundation for studies on gas dynamics within the ice column and the gas exchange at both ice interfaces, i.e. with the atmosphere and the ocean. 
    more » « less
  9. This data has been collected and processed as part of the MOSAiC (Multidisciplinary Drifting Observatory for the Study of Arctic Climate) expedition. MOSAiC is a collaborative initiative led by the Alfred Wegener Institute and has received substantial funding from the German Federal Ministry of Education and Research, as well as the US National Science Foundation, Department of Energy, NOAA, and NASA. Numerous other international agencies and institutions have also made significant contributions. The primary objective of this program was to conduct a comprehensive investigation of the evolving Arctic over the course of a year. The expedition took place from October 2019 to October 2020 and was conducted aboard the Research Vessel Ice Breaker (RVIB) Polarstern, involving participants from 20 nations. As part of this submission, we are presenting five distinct datasets. Two of these datasets are related to seawater, two pertain to meltwater, and one pertains to sea ice. The "in-situ" datasets provide information on dissolved methane concentrations and isotope ratios, while the "in-vitro" datasets offer insights into potential methane oxidation rate constants. In the case of sea ice, only "in-vitro" data was collected, as discrete measurements were obtained from another research group. These datasets are the result of the project titled "Collaborative Research: Quantifying microbial controls on the annual cycle of methane and oxygen within the ultraoligotrophic Central Arctic during MOSAiC." The aim of this study was to assess the marine methane metabolism during a one-year period in the Central Arctic Ocean. The results have provided insights into the biogeography of methane hotspots, both in terms of production and oxidation. 
    more » « less